
Recent Advances in Neural Bandits

Yikun Ban

11/22, 2021

1 / 33

Roadmap

▶ Background

▶ NeuralUCB

▶ NeuralTS

▶ EE-Net

2 / 33

Background

▶ Sequential decision-making problem is everywhere.
▶ Personalized recommendation.
▶ Online Advertising.
▶ Clinical Trials.

▶ Exploitation-exploration dilemma exists in decision making.
▶ Exploitation: Make greedy decisions by exploiting past data.
▶ Exploration: Take risks to explore new knowledge.

▶ Powerful tool: Contextual multi-armed bandits.

3 / 33

Background: Contextual Bandit

n-armed contextual bandit problem:

▶ Learner observes n d-dimensional contextual vectors (arms) in a round t

{xt,i ∈ Rd|i ∈ [n]}

▶ Learner selects an arm xt,i′ and receives a reward rt,i′ . For brevity, denote by xt

the selected arm in t and by rt its reward.

▶ The goal is to minimize the following pesudo regret:

RT = E

[
T∑
t=1

(r∗t − rt)

]
(1)

where r∗t = maxi∈[n] E[rt,i].

4 / 33

Background: Linear Contextual Bandit

▶ Given an arm xt,i, i ∈ [n], its reward rt,i is assumed to be a linear function:

rt,i = θ⊤xt,i + ηt,i, ηt,i ∼ ν − sub-Gaussian (2)

where θ is unknown.

▶ To approximate θ, in rount t, based on the past data {xi, ri}ti=1, Ridge regression
is applied

θ̂t = Ait,t
−1bit,t, Ait,t = I+

t∑
i=1

xix
⊺
i , bit,t =

t∑
i=1

xiri, (3)

where I is a d× d identity matrix.

5 / 33

Background: Linear Contextual Bandit

Upper Confidence Bound: With probability 1− δ,

∥θ − θ̂∥ ≤ UCB. (4)

Exploration strategies:

▶ ϵ-greedy: With probability 1− ϵ, xt = argi∈[n]max θ̂
⊤
xt,i; Otherwise, randomly

choose xt.

▶ UCB:
xt = argi∈[n]max

(
θ̂
⊤
xt,i + UCBt,i

)
(5)

▶ Thompson Sampling:

xt = argi∈[n]max θ̂
⊤
xt,i, θ̂ ∼ N (Ait,t

−1bit,t, σ
2
t,i) (6)

where σt,i can be thought of as an UCB.

6 / 33

Background: Neural Contextual Bandit

▶ Given an arm xt,i, i ∈ [n], its reward rt,i is assumed to be a linear/non-linear
function:

rt,i = h(xt,i) + ηt,i, ηt,i ∼ ν − sub-Gaussian

where h is unknown and 0 ≤ h(x) ≤ 1.

▶ The goal is to minimize the following pesudo regret:

RT = E

[
T∑
t=1

(r∗t − rt)

]
=

T∑
t=1

(h(x∗
t)− h(xt))

where x∗
t = argi∈[n]maxh(xt,i).

7 / 33

NeuralUCB: Network Function

▶ To learn some universal reward function h, use the universal function
approximator, such as neural networks.

▶ Here, use fully-connected neural network:

f(xt,i;θ) = WLσ(WL−1σ(. . . σ(W1xt,i))).

where σ is the ReLU activation function and θ =
(
vec(WL)

⊺, . . . ,
vec(W1)

⊺
)⊺ ∈ Rp.

8 / 33

NeuralUCB: Selection Criterion

▶ Let g(xt,i;θ) be the gradient ▽θf(xt,i;θ).

▶ In round t, given n arms {xt,1, . . . ,xt,n}, we select arm by

xt = argi∈[n]max

 f(xt,i;θt−1)︸ ︷︷ ︸
Exploitation: Estimated reward

+ γt−1

√
g(xt,i;θt−1)⊤Z

−1
t−1g(xt,i;θt−1)/m︸ ︷︷ ︸

Exploration: UCB


(7)

where γt−1 is a tuning parameter and Zt−1 = I+
∑t

t′=1 g(xt′ ;θ)g(xt′ ;θ)
⊤ is the

gradient outer product matrix.

9 / 33

NeuralUCB: Update θ

▶ In round t, after selecting xt, receive rt.

▶ Based on past data {xi, ri}ti=1, define loss function:

L =

t∑
i=1

(f(xi;θ)− ri)
2 +mλ∥θ − θ0∥2/2. (8)

where θ0 are the parameters at initialization.

▶ Conduct gradient descent on θ

10 / 33

NeuralUCB: Workflow

11 / 33

NeuralUCB: Regret Upper Bound

Regret upper bound complexity:

RT ≤ O(
√
T d̃ log T)

12 / 33

NeuralUCB: Regret Upper Bound

▶ d̃ is defined as the effective dimension, which can be thought of as the eigenvalues
of context NTK.

13 / 33

NeuralUCB: Regret Upper Bound

To derive an Upper Confidence Bound:

|f(xt;θ)− h(xt)| ≤ UCB

▶ h(xt) is linear with respect to gradient.

▶ (1) Apply Ridge regression on g(x; θ0). Calculated the distance between h(xt)
and Ridge regression.

14 / 33

NeuralUCB: Regret Upper Bound

▶ (2) Apply NTK objective < g(x; θ0),θt − θ0 >. Calculated the distance between
Ridge regression and NTK objective.

▶ (3) Calculated the distance between NTK objective and Network function.

▶ Putting them together, we can calculate the upper bound for |f(xt;θ)− h(xt)|!.

15 / 33

Neural Thompson Sampling

▶ Given an arm xt,i, to learn the expected reward h(xt,i), use the neural network

f(xt,i;θ) = WLσ(WL−1σ(. . . σ(W1xt,i))).

▶ In round t, given n arms {xt,1, . . . ,xt,n}, select an arm by

∀i ∈ [n],draw r̂t,i ∼ N (f(xt,i;θ)︸ ︷︷ ︸
Mean: Exploitation

, σ2︸︷︷︸
Variance: Exploration

)

Select xt = argi∈[n]max r̂t,i.

(9)

where σ = νg(xt,i;θt−1)
⊤Z−1

t−1g(xt,i;θt−1).

▶ Receive reward and update parameters.

16 / 33

Neural Thompson Sampling: Regret Upper Bound

▶ Regret bound complexity:

RT ≤ O(
√

T d̃ log T).

17 / 33

Neural Thompson Sampling: Regret Upper Bound

▶ (1) Calculate variance σ2, which can be thought of as the UCB of
|f(xt,i;θ)− h(xt,i)|.
1. Calculate the distance between h(xt,i) and Ridge regression.
2. Calculate the distance between Ridge regression and NTK.
3. Calculate the distance between NTK and f(xt,i;θ).

▶ (2) Use concentration inequalities to upper bound |f(xt,i;θ)− rt,i|.

18 / 33

EE-Net: Exploitation-Exploration Neural Networks

▶ Same, given an arm xt,i, to learn the expected reward h(xt,i), use the neural
network

f1(xt,i;θ
1) = WLσ(WL−1σ(. . . σ(W1xt,i))).

▶ Why explore? To fill the gap between expected reward and estimated reward.

𝑓!(𝑥",$; 𝜃!)

ℎ(𝑥",$)

Gap

𝑓!(𝑥",$; 𝜃!)

ℎ(𝑥",$)

Gap

Case 1: Upward Exploration Case 2: Downward Exploration
Figure 1: Case 1: When expected reward is larger than estiamted reward.

19 / 33

EE-Net: Exploitation-Exploration Neural Networks

▶ Instead of calculating a statistic upper bound for |h(xt,i)− f1(xt,i;θ
2)|, EE-Net

uses a neural network f2 to learn h(xt,i)− f1(xt,i;θ
2).

f2(xt,i;θ
2) = WLσ(WL−1σ(. . . σ(W1xt,i))).

▶ Ground truth: h(xt,i)− f1(xt,i;θ
1), i.e., rt,i − f1(xt,i;θ

1).

▶ h(xt,i)− f1(xt,i;θ
1) indicates exploration direction: ”Upward” or ”Downward”

exploration.

𝑓!(𝑥",$; 𝜃!)

ℎ(𝑥",$)

Gap

𝑓!(𝑥",$; 𝜃!)

ℎ(𝑥",$)

Gap

Case 1: Upward Exploration Case 2: Downward Exploration

20 / 33

EE-Net: Exploitation-Exploration Neural Networks

▶ Input: Gradient ▽θ1f1(xt,i;θ
1). Why?

▶ ▽θ1f1(xt,i;θ
1) contains two sides of information.

1. Arm feature xt,i.
2. Discriminative ability of f1(Exploration depending on the exploitation).

▶ Build loss function L2

L2 =
1

2

t∑
i=1

f2
(
▽θ1f1(xt,i;θ

1);θ2
)
− (ri − f1(xi;θ

1))︸ ︷︷ ︸
Ground truth

2

▶ After receiving rt in round t, based on
{
▽θ1f1(xi;θ

1
i), ri − f1(xi;θ

1
i)
}t

i=1
, use

gradient descent to update θ2.

21 / 33

EE-Net: Selection Criterion 1

▶ In round t, given n arms {xt,1, . . . ,xt,n}, we select arm by

xt = argi∈[n]max

f1(xt,i;θ
1
t−1)︸ ︷︷ ︸

Exploitation

+ f2

(
▽θ1

t−1
f1(xi;θ

1
t−1);θ

2
t−1

)
︸ ︷︷ ︸

Exploration

 (10)

▶ Receive reward rt and update θ1,θ2.

22 / 33

EE-Net: Selection Criterion 2

Build Decision Maker f3(·;θ3).

▶ In roung t, given an arm xt,i, calculate its f1, f2 scores.

▶ Build a neural network f3(·;θ3).

▶ Input: f1(xt,i;θ
1
t−1), f2(▽θ1

t−1f1
;θ2

t−1).

▶ Ground truth: pt,i, i.e., the probability of xt,i being the optimal arm in round t.

1. Binary reward (0, 1): pt,i = 1.0 if rt,i = 1; Otherwise, pt,i = 0.0 if rt,i = 0.

2. Continuous reward [0, 1]: (1) pt,i =
rt,i−0
1−0 = rt,i; (2) Set a threshold γ. pt,i = 1.0 if

rt,i > γ; Otherwise pt,i = 0.0.

▶ Build loss function:

L3 = −1

t

t∑
i=1

[
pt log f3((f1, f2);θ

3) + (1− pt) log(1− f3((f1, f2);θ
3))

]
. (11)

▶ Update θ3 in each round.

23 / 33

EE-Net: Selection Criterion 2

▶ In round t, given n arms {xt,1, . . . ,xt,n}, we select arm by

1. Calculated f1(xt,i;θ
1
t−1), f2(▽θ1

t−1f1
;θ2

t−1) (12)

2. xt = argi∈[n]max f3

(
(f1(xt,i;θ

1
t−1), f2(▽θ1

t−1f1
;θ2

t−1));θ
3
t−1

)
(13)

▶ Receive reward rt and update θ1,θ2,θ3.

24 / 33

EE-Net: Regret Upper Bound

▶ Regret bound complexity:
RT ≤ O(

√
T log T).

25 / 33

EE-Net: Regret Upper Bound

Proof Workflow:

▶ ∀t ∈ [T], i ∈ [n], assume (xt,i, rt,i) are i.i.d random variables, generated from
unknown D and f3 = f1 + f2.

▶ Given {xi, ri}t−1
i=1, calculate convergency error of f3.

▶ Calculate the generalization bound of f3 with respect to h, such that we can
upper bound |f3(·;θ3)− h(·)|.

26 / 33

Comparison 1: Selection Criterion

27 / 33

Comparison 2: Exploration Direction

𝑓!(𝑥",$; 𝜃!)

ℎ(𝑥",$)

Gap

𝑓!(𝑥",$; 𝜃!)

ℎ(𝑥",$)

Gap

Case 1: Upward Exploration Case 2: Downward Exploration

28 / 33

Comparison 3: Running Complexity

29 / 33

Comparison 4: Regret Bound

30 / 33

Comparison 5: Empirical Performance

31 / 33

Summary

▶ Background
▶ Rule-based Exploration

1. NeuralUCB
2. NeuralTS

▶ Neural-based Exploration

1. EE-Net

32 / 33

Thanks

33 / 33

