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Background

» Sequential decision-making problem is everywhere.

» Personalized recommendation.
» Online Advertising.
» Clinical Trials.

» Exploitation-exploration dilemma exists in decision making.

> Exploitation: Make greedy decisions by exploiting past data.
» Exploration: Take risks to explore new knowledge.

» Powerful tool: Contextual multi-armed bandits.
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Background: Contextual Bandit

n-armed contextual bandit problem:

» Learner observes n d-dimensional contextual vectors (arms) in a round ¢
d -
{x € RYi € [n]}

» Learner selects an arm x; ;» and receives a reward r; ;. For brevity, denote by x;
the selected arm in ¢ and by r; its reward.

» The goal is to minimize the following pesudo regret:

where 7} = max;cp,) Elre ).
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Background: Linear Contextual Bandit

» Given an arm xy;,7 € [n], its reward 7 ; is assumed to be a linear function:

Tti = HTXt,i + Meiy Mei ~ v — sub-Gaussian (2)
where 6 is unknown.

> To approximate 0, in rount ¢, based on the past data {x;,r;}!_;, Ridge regression
is applied

t t
n o -1 _ E T — §
0t - Ait,t bit,t; Ait,t =1 + Xixia bit,t - XiTi, (3)
=1 =1

where I is a d x d identity matrix.
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Background: Linear Contextual Bandit

Upper Confidence Bound: With probability 1 — 4,
16 — 8] < UCB. (4)

Exploration strategies:

AT
> e-greedy: With probability 1 — €, x¢ = arg;c(,y max6 x;; Otherwise, randomly

choose x;.
» UCB: AT
Xt = arg;c[,) Max (0 Xti + UCBt,i) (5)
» Thompson Sampling:
AT B _
Xp = argie[n] max 6 Xt i 0~ N(Ait,t lbit,ta 0-15271) (6)

where o ; can be thought of as an UCB.
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Background: Neural Contextual Bandit

» Given an arm Xy ;,¢ € [n], its reward 7, is assumed to be a linear/non-linear
function:
rei = h(Xei) +Mei, Mei ~ v — sub-Gaussian

where h is unknown and 0 < h(x) < 1.

» The goal is to minimize the following pesudo regret:

T
Ry =E !Z(TZ‘ - Tt)] =D (h(x}) = h(xt))

t=1

where x} = arg;c,) max h(xy).
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NeuralUCB: Network Function

» To learn some universal reward function h, use the universal function
approximator, such as neural networks.

» Here, use fully-connected neural network:

f(Xt,Z'; 9) = WLJ(WL_l(T(. .. U(Wlxm))).

input layer

hidden layer 1 hidden layer 2

where o is the ReLU activation function and 8 = (vec(WL)T, e
vec(W1)T)T € RP.
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NeuralUCB: Selection Criterion

> Let g(x¢,;60) be the gradient Vg f(xy,;0).

» In round ¢, given n arms {X¢1,...,X¢,}, we select arm by
. . -1 .
Xt = argic(,] Max J(Xt,i50¢-1) + -1 \/Q(Xt,ia 0: 1) Z, 1 9(xt;0¢-1)/m
——
Exploitation: Estimated reward Exploration: UCB /

(7)
where ;_1 is a tuning parameter and Z;_; =1+ Zi/:l g(xy;0)g(x;0) 7 is the
gradient outer product matrix.
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NeuralUCB: Update 6

» In round ¢, after selecting x;, receive r;.

> Based on past data {x;,r;}!_;, define loss function:

t

L= (f(xi;0) = r:)* +mA|6 — 6o|*/2. (8)

i=1
where 0 are the parameters at initialization.

» Conduct gradient descent on 6
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NeuralUCB: Workflow

4
5:
6:
7:
8:

fort=1,...,Tdo
Observe {x; ,}X |
fora=1,...,K do

Compute Uy o = f(X¢t,0;0:-1) + ’thl\/g(xt,a; 0:-1)"Z; ! g(Xt,0;0:-1)/m
Leta; = argmax, ¢ x| Uta
9: end for
10:  Play a; and observe reward 7; q,
11:  Compute Z: = Zs—1 + g(Xt,a,; 0t—1)8(Xt a,; 0, 1) /m
12:  Let 8; = TrainNN(\, 7, J,m, {x; o, F1, {ri,a; i1, O0)
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NeuralUCB: Regret Upper Bound

Regret upper bound complexity:

Ry < O(VTdlogT)

Theorem 4.5. Let d be the effective dimension, and h =
[h(x?)]7K € RTX. There exist constant C1, Cz > 0, such
that for any 6 € (0, 1), if

m > poly(T, L, K, A", A1, 577, log(1/6)),  4.2)
n=Ci(mTL+mX\,

A > max{1,S72}, and S > v2hTHh, then with prob-
ability at least 1 — 4, the regret of Algorithm 1 satisfies

Ry < 3VTy/dlog(1 + TK/A) +2

. [V\/djog(l +TK/\)+2—2logd
+ (A + C,TL)(1 — A\/(TL))"/*\/T]x
+ +2ﬁs} +1. 4.3)
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NeuralUCB: Regret Upper Bound

> d is defined as the effective dimension, which can be thought of as the eigenvalues
of context NTK.

Definition 4.1 (Jacot et al. (2018); Cao & Gu (2019)). Let
{x*}7X be a set of contexts. Define

0 5O

~ . PIEEED

HY =2 = (x',x), A= ( b ?ﬂ) )
2‘, EJ',J'

141
B0 = 2 no.a0) 0],
=l (1 1
ngl) = 2H§,J)']E(u,v)~N(0,Aff;) [0’ (u)o’ (v)] + Eijl).
Then, H = (H®) + X(5))/2 is called the neural tangent
kernel (NTK) matrix on the context set.

Lemma C.1 (Theorem 3.1, Arora et al. (2019)). Fix ¢ > 0 and § € (0,1). Suppose that

me (LG log(L/5) )7

et
then for any ¢, j € [T'K], with probability at least 1 — § over random initialization of 8y, we have

l(g(x"; 60),&(x"; 60))/m — H, j| <e.
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NeuralUCB: Regret Upper Bound

To derive an Upper Confidence Bound:
| f(x¢;0) — h(x;)| < UCB

» h(x;) is linear with respect to gradient.
Lemma 5.1. There exists a positive constant C such that
for any 6 € (0,1), if m > CT*K*L8 log(T?K2L/5)/ )4,
then with probability at least 1 — ¢, there exists a * € R?
such that
h(x') = (g(x";60), 0" — o),
» (1) Apply Ridge regression on g(x;6p). Calculated the distance between h(x;)
and Ridge regression.

lv/m(0* — 6o) — Z; 'by|lz, < ¥
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NeuralUCB: Regret Upper Bound

> (2) Apply NTK objective < g(x;6p),0; — 0y >. Calculated the distance between
Ridge regression and NTK objective.

10; — 8p — Z; ‘b, /v/m|l2 < (1 — ngmA)/2/t/(mA) + Csm=2/3\/logmL/23/3X=5/3(1 4+ \/t/).

» (3) Calculated the distance between NTK objective and Network function.

Lemma B.4 (Lemma 4.1, Cao & Gu (2019)). There exist constants {C_’,-};?:1 > 0 such that for any § > 0, if 7 satisfies that
Cym ™32 L=3/2(1og(TK L2 /6)]*/? < 7 < C L 5[logm] ~3/2,
then with probability at least 1 — 4, for all §,§satisfying 16— 6oll2 <, Hé— 6ol]2 < 7and j € [TK] we have

‘f(xj;(;) — f(x7;0) — (g(x;0),0 — (3}‘ < Csm™/*L3/mlogm.

» Putting them together, we can calculate the upper bound for |f(x;;0) — h(x)|!.
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Neural Thompson Sampling

» Given an arm Xy, to learn the expected reward h(x;;), use the neural network

f(Xt,Z'; 9) = WLJ(WL_1(7<. .. U(Wlxm))).

» In round ¢, given n arms {X¢1,...,X¢}, select an arm by
Vi € [n],draw 7y ~ N (- f(xe4;0) o2 )
A’—/ . .
Mean: Exploitation Variance: Exploration (9)

Select x; = arg;c(y) Max 'y ;.

where 0 = vg(xy; 9t—1)TZ{_119(Xt,¢; 0;-1).

» Receive reward and update parameters.
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Neural Thompson Sampling: Regret Upper Bound

P> Regret bound complexity:

Ry < O(VTdlogT).

Theorem 3.5. Under Assumption 3.4, set the parameters in Algorithm 1 as A =1+ 1/T, v
B + Ry/dlog(1 + TK/)) +2+2log(1/3) where B = ma.x{l/(22eﬁ),\/2hTH*1h} with h =
(h(xY),...,h(xTE))T, and R is the sub-Gaussian parameter. In line 9 of Algorithm 1, set =
Ci(mA+mLT)~! and J = (1 + LT/X)(C2 + log(T* LA~ log(1/5)))/C} for some positive constant
C1, Cy. If the network width m satisfies:

m > poly (A7, K, L, log(1/6), A7)

then, with probability at least 1 — §, the regret of Algorithm 1 is bounded as

Rr < Cy(1 + er)vy/2)\L(dlog(1 + TK) + 1)T + (4 + Ca(1 + er)vL)\/210g(3/8)T + 5,

where Cy, C3 are absolute constants, and ¢y = /4logT + 2log K.
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Neural Thompson Sampling: Regret Upper Bound

» (1) Calculate variance 2, which can be thought of as the UCB of
| f(xt,3:0) — h(xt4)].

1. Calculate the distance between h(x; ;) and Ridge regression.
2. Calculate the distance between Ridge regression and NTK.
3. Calculate the distance between NTK and f(x; ;).

» (2) Use concentration inequalities to upper bound |f(x¢;0) — ¢
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EE-Net: Exploitation-Exploration Neural Networks

» Same, given an arm X ;, to learn the expected reward h(x;;), use the neural
network
f1 (Xm; 01) = WLO'(WL_la(. .. U(W1Xt7z‘))).

> Why explore? To fill the gap between expected reward and estimated reward.
@ hl(x)

@ fi(x:;0Y

Figure 1. Case 1: When expected reward is larger than estiamted reward.
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EE-Net: Exploitation-Exploration Neural Networks

> Instead of calculating a statistic upper bound for |h(x;;) — f1(x:;60?)|, EE-Net
uses a neural network f to learn h(x¢;) — fl(xtﬁi;OQ).

f2<Xt’Z‘; 02) = WLU(WL_lo'(. .. O’(Wlxm‘))).

» Ground truth: h(xy;) — fl(xtvi;el), T fl(xtvi;Hl).
> h(x¢i) — fl(xt’i;el) indicates exploration direction: " Upward” or " Downward”

exploration.
® h(x) ® filxi;0
Gap Gap
@ fi(xiioh ® ()
Case 1: Upward Exploration Case 2: Downward Exploration

20/33



EE-Net: Exploitation-Exploration Neural Networks

» Input: Gradient Vglfl(xt,i;el). Why?
> Vo, f1(x1:;0") contains two sides of information.

1. Arm feature x; ;.
2. Discriminative ability of f1(Exploration depending on the exploitation).

» Build loss function Lo

t
1
Ly = 52 F2 (Vo1 f1(x1,4:0");0%) — (ri — fi(x;;60"))
i=1
Ground truth

» After receiving 7 in round ¢, based on {Vglfl(xi;(?%),ri - fl(xi;G})};l, use

gradient descent to update 6°.
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EE-Net: Selection Criterion 1

» In round ¢, given n arms {x;1,...,X¢,}, we select arm by
1 1 2
x; = argieqmax | fi(xeis 00 1)+ o (Vay | F1(xi:00-1): 67, ) (10)
~—_—
Exploitation Expl(:rration

> Receive reward 74 and update 0!, 62
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EE-Net: Selection Criterion 2

Build Decision Maker f3(-;8%).
>

>
| 2
| 2

In roung ¢, given an arm x; ;, calculate its f1, fa scores.
Build a neural network f3(-;6%).
. .pl .p2
Input: fl(xt,iaet—l)’fQ(vetl_lflaet—l)'
Ground truth: p;;, i.e., the probability of x;; being the optimal arm in round t.

1. Binary reward (0,1): p;; = 1.0 if ry ; = 1; Otherwise, p;; = 0.0 if r,; = 0.

Thi0 7¢i; (2) Set a threshold ~. p;; = 1.0 if

2. Continuous reward [0,1]: (1) pti = 555

¢ > 7v; Otherwise p; ; = 0.0.
Build loss function:

t

L3 = _% Z [pe1og f3((f1, f2);0%) + (1 — pr) log(1 — fs((f1, f2);6°))] . (11)

i=1
Update 6 in each round.
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EE-Net: Selection Criterion 2

» In round ¢, given n arms {x;1,...,X¢,}, we select arm by
1 2

2. Xy = argjc(, Max f3 ((fl(Xt,ﬁe%—l)a f2(v0t171f159?—1)); 9?—1) (13)

> Receive reward r; and update 0',62,63.
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EE-Net: Reg

P> Regret bound complexity:

Ry < O(\/TlogT).

Theorem 1. Let fi, f follow the setting of f (Eq. (5.1) ) with width m,m’ respectively and same
depth L. Let L1, Ly be loss function defined in Algorithm|1| Set fs as fs = fi1 + fo. Given two
constants €1, €3, 0 < €1, €2 < 1, assume

m > poly(T,n, L,log(1/5) - d- eV 17%) m/ > Q(m?L)

3 ds 3 O(m*L)§
m=9 (pozym nL)- m> =0 (poly(T, nL)- m) (53)
T,n,L T,n,L
K =6 (pioly((s;n, ) -log ((51/2)_1)) , Ko=0 (pioly(één, ) -log (e;l)) s

then with probability at least 1 — 4, the expected cumulative regret of EE-Net in T' rounds satisfies

Rr <O ((2\/T - 1)\/%) +0 ((62 +6)2VT —1)y/2 1og((9(Tn)/5)) . (54
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EE-Net: Regret Upper Bound

Proof Workflow:

» Vt e [T)],i € [n], assume (xq;,7¢,) are i.i.d random variables, generated from
unknown D and f3 = f1+ fo.

> Given {x;,r;}! Z_l, calculate convergency error of fs.

Lemma B.3. Suppose m > max (poly(n,L,(s_1 -d),Q(eV l°g1/‘s)), the learning rate n =

Q( m) the number of iterations K satisfies the conditions in Eq. (C.1), then with probability
at least 1 — 0, given a constant 0 < € < 1, starting from random initialization,

(1) (Theorem 1 in (Allen-Zhu et al., 2019)) The loss satisfies L < € (Eq. (5.2)) in
K= Q(W -log e~ 1) iterations,

» Calculate the generalization bound of f3 with respect to h, such that we can
upper bound |f3(-;8%) — h(-)|.

Lemma B.1. Given 0 < €1, € < 1, suppose m,n, K1, Ky satisfy the conditions in Eq. (C.1). Then,
with probability at least 1 — 6, for any t € [T, € [n], it holds uniformly that

B, ol F2(T0, o exVmEs89) o — falxess81)) [} € ) 22 4 ey BT
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Comparison 1: Selection Criterion

Table 1: Selection Criterion Comparison (x;: selected arm in round ¢).

Methods

Selection Criterion

Neural Epsilon-greedy

With probability 1 — §, x; = arg max;e[n) f1(Xt,i; 01); Other-
wise, select x; randomly.

Neural TS (Zhang et al., 2020)

For x; ;, Vi € [n], draw 7 ; from N (f1(x,:; 01), 04;2). Then,
Xt = arg maX;en] ft,i-

NeuralUCB (Zhou et al., 2020)

Xy = argmax;epn (f1(xe,s; o) + UCBy,;) .

EE-Net (Our approach)

Vi € [n], compute fl(xt,i;el)a fo (Velfl(xt,i;el);oz) (Ex-
ploration Net). Then x; = arg max;c(,) f3(f1, f2; 6°).

27/33



Comparison 2: Exploration Direction

Table 3: Exploration Direction Comparison.

Methods | "Upward" Exploration | "Downward" Exploration
NeuralUCB | X

NeuralTS | Randomly Randomly
EE-Net | N

@ hlx:)
Gap

® fi(xiioh

Case 1: Upward Exploration

® fi(x:6Y
Gap

@ n(x)
Case 2: Downward Exploration
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Comparison 3: Running Complexity

Table 5: Running Time/Space Complexity Comparison (p is number of parameters of f;).
Methods | Time | Space | Training Time (# Neural Networks)

NeuralUCB | O(p?) | O(p?) | 1
NeuralTS | O(p?) | O(p?) | 1
EE-Net | O(p) | O(p) | 2-3
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Comparison 4: Regret Bound

Table 4: Regret Bound Comparison.

Methods | Regret Upper Bound ‘ Effective Dimension d

NeuralUCB | O(VdTlogT) ‘ Yes
NeuralTS | O(VdTlogT) ‘ Yes
EE-Net | O(VT/logT) ‘ No
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Comparison

5: Empirical Performance

Movielens Yelp
2000
—- KernalucB 6000 —- KernalucB
1750 LinUCB > LinuCB
+ Neural-Noexplore 5000 - Neural-Noexplore
1500 1 —— Neural-epsilon ~—— Neural-epsilon
NeuralTs NeuralTs
4000
12507 — wNeuralucs . — NeuralUcB
4 —— EE-Net © —— EE-Net
2 1000 2 3000
& I3
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1000
250
0 o
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Rounds. Rounds
Mnist Disin
2000 < 2000 =
—- KernalUCB / —- KernalUCB
1750 LinUCB 1750 /' LinUCB
Neural-Noexplore : ++++ Neural-Noexplore
15001 —— Neural-epsilon 1500 / —— Neural-epsilon
NeuralTS / NeuralTS
, 125079 — Neuraluce e / — Neuralucs
] — EE 8 J — EE
1000 EENet & 1000 EENet
g g
& &
750 750
500 500
250 250
o 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Rounds Rounds

Figure 2: Regret comparison on Mnist and Disin (mean of 10 runs with standard deviation (shadow)).
With the same exploitation network f;, EE-Net outperforms all baselines.
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Summary

» Background
» Rule-based Exploration

1. NeuralUCB
2. NeuralTS

» Neural-based Exploration
1. EE-Net
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