

Recent Advances in Neural Bandits

Yikun Ban

11/22, 2021

Roadmap

- Background
- ► NeuralUCB
- NeuralTS
- ► EE-Net

Background

- Sequential decision-making problem is everywhere.
 - Personalized recommendation.
 - Online Advertising.
 - Clinical Trials.
- Exploitation-exploration dilemma exists in decision making.
 - Exploitation: Make greedy decisions by exploiting past data.
 - Exploration: Take risks to explore new knowledge.
- ▶ Powerful tool: Contextual multi-armed bandits.

Background: Contextual Bandit

n-armed contextual bandit problem:

 \blacktriangleright Learner observes n d-dimensional contextual vectors (arms) in a round t

$$\{\mathbf{x}_{t,i} \in \mathbb{R}^d | i \in [n]\}$$

- ▶ Learner selects an arm $\mathbf{x}_{t,i'}$ and receives a reward $r_{t,i'}$. For brevity, denote by \mathbf{x}_t the selected arm in t and by r_t its reward.
- ▶ The goal is to minimize the following pesudo regret:

$$R_T = \mathbb{E}\left[\sum_{t=1}^T (r_t^* - r_t)\right] \tag{1}$$

where $r_t^* = \max_{i \in [n]} \mathbb{E}[r_{t,i}]$.

Background: Linear Contextual Bandit

▶ Given an arm $\mathbf{x}_{t,i}$, $i \in [n]$, its reward $r_{t,i}$ is assumed to be a linear function:

$$r_{t,i} = \boldsymbol{\theta}^{\top} \mathbf{x}_{t,i} + \eta_{t,i}, \quad \eta_{t,i} \sim \nu - \mathsf{sub}\text{-}\mathsf{Gaussian}$$
 (2)

where θ is unknown.

▶ To approximate θ , in rount t, based on the past data $\{\mathbf{x}_i, r_i\}_{i=1}^t$, Ridge regression is applied

$$\hat{\boldsymbol{\theta}}_t = \mathbf{A}_{i_t,t}^{-1} \mathbf{b}_{i_t,t}, \quad \mathbf{A}_{i_t,t} = \mathbf{I} + \sum_{i=1}^t \mathbf{x}_i \mathbf{x}_i^\mathsf{T}, \quad \mathbf{b}_{i_t,t} = \sum_{i=1}^t \mathbf{x}_i r_i, \tag{3}$$

where I is a $d \times d$ identity matrix.

Background: Linear Contextual Bandit

Upper Confidence Bound: With probability $1 - \delta$,

$$\|\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}\| \le \mathsf{UCB}.\tag{4}$$

Exploration strategies:

- ϵ -greedy: With probability 1ϵ , $\mathbf{x}_t = \arg_{i \in [n]} \max \hat{\boldsymbol{\theta}}^\top \mathbf{x}_{t,i}$; Otherwise, randomly choose \mathbf{x}_t .
- ► UCB:

$$\mathbf{x}_t = \arg_{i \in [n]} \max \left(\hat{\boldsymbol{\theta}}^{\top} \mathbf{x}_{t,i} + \mathsf{UCB}_{t,i} \right)$$
 (5)

► Thompson Sampling:

$$\mathbf{x}_{t} = \arg_{i \in [n]} \max \hat{\boldsymbol{\theta}}^{\top} \mathbf{x}_{t,i}, \ \hat{\boldsymbol{\theta}} \sim \mathcal{N}(\mathbf{A}_{i_{t},t}^{-1} \mathbf{b}_{i_{t},t}, \sigma_{t,i}^{2})$$
 (6)

where $\sigma_{t,i}$ can be thought of as an UCB.

Background: Neural Contextual Bandit

▶ Given an arm $\mathbf{x}_{t,i}$, $i \in [n]$, its reward $r_{t,i}$ is assumed to be a linear/non-linear function:

$$r_{t,i} = h(\mathbf{x}_{t,i}) + \eta_{t,i}, \quad \eta_{t,i} \sim \nu - \mathsf{sub} ext{-}\mathsf{Gaussian}$$

where h is unknown and $0 \le h(\mathbf{x}) \le 1$.

▶ The goal is to minimize the following pesudo regret:

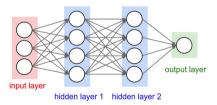
$$R_T = \mathbb{E}\left[\sum_{t=1}^{T} (r_t^* - r_t)\right] = \sum_{t=1}^{T} (h(\mathbf{x}_t^*) - h(\mathbf{x}_t))$$

where $\mathbf{x}_t^* = \arg_{i \in [n]} \max h(\mathbf{x}_{t,i})$.

NeuralUCB: Network Function

- ightharpoonup To learn some universal reward function h, use the universal function approximator, such as neural networks.
- ► Here, use fully-connected neural network:

$$f(\mathbf{x}_{t,i}; \boldsymbol{\theta}) = \mathbf{W}_L \sigma(\mathbf{W}_{L-1} \sigma(\dots \sigma(\mathbf{W}_1 \mathbf{x}_{t,i}))).$$



where σ is the ReLU activation function and $\boldsymbol{\theta} = (\text{vec}(\mathbf{W}_L)^\intercal, \dots, \text{vec}(\mathbf{W}_1)^\intercal)^\intercal \in \mathbb{R}^p$.

NeuralUCB: Selection Criterion

- ▶ Let $g(\mathbf{x}_{t,i}; \boldsymbol{\theta})$ be the gradient $\nabla_{\boldsymbol{\theta}} f(\mathbf{x}_{t,i}; \boldsymbol{\theta})$.
- ▶ In round t, given n arms $\{\mathbf{x}_{t,1},\ldots,\mathbf{x}_{t,n}\}$, we select arm by

$$\mathbf{x}_{t} = \arg_{i \in [n]} \max \left(\underbrace{f(\mathbf{x}_{t,i}; \boldsymbol{\theta}_{t-1})}_{\text{Exploitation: Estimated reward}} + \underbrace{\gamma_{t-1} \sqrt{g(\mathbf{x}_{t,i}; \boldsymbol{\theta}_{t-1})^{\top} \mathbf{Z}_{t-1}^{-1} g(\mathbf{x}_{t,i}; \boldsymbol{\theta}_{t-1}) / m}}_{\text{Exploration: UCB}} \right)$$
where γ_{t-1} is a tuning parameter and $\mathbf{Z}_{t-1} = \mathbf{I} + \sum_{t'=1}^{t} g(\mathbf{x}_{t'}; \boldsymbol{\theta}) g(\mathbf{x}_{t'}; \boldsymbol{\theta})^{\top}$ is the

gradient outer product matrix.

NeuralUCB: Update θ

- ▶ In round t, after selecting \mathbf{x}_t , receive r_t .
- ▶ Based on past data $\{\mathbf{x}_i, r_i\}_{i=1}^t$, define loss function:

$$\mathcal{L} = \sum_{i=1}^{t} (f(\mathbf{x}_i; \boldsymbol{\theta}) - r_i)^2 + m\lambda \|\boldsymbol{\theta} - \boldsymbol{\theta}_0\|^2 / 2.$$
 (8)

where θ_0 are the parameters at initialization.

ightharpoonup Conduct gradient descent on heta

NeuralUCB: Workflow


```
4: for t = 1, ..., T do
5: Observe \{\mathbf{x}_{t,a}\}_{a=1}^K
6: for a = 1, ..., K do
7: Compute U_{t,a} = f(\mathbf{x}_{t,a}; \boldsymbol{\theta}_{t-1}) + \gamma_{t-1} \sqrt{\mathbf{g}(\mathbf{x}_{t,a}; \boldsymbol{\theta}_{t-1})^{\top} \mathbf{Z}_{t-1}^{-1} \mathbf{g}(\mathbf{x}_{t,a}; \boldsymbol{\theta}_{t-1})/m}
8: Let a_t = \operatorname{argmax}_{a \in [K]} U_{t,a}
9: end for
10: Play a_t and observe reward r_{t,a_t}
11: Compute \mathbf{Z}_t = \mathbf{Z}_{t-1} + \mathbf{g}(\mathbf{x}_{t,a_t}; \boldsymbol{\theta}_{t-1}) \mathbf{g}(\mathbf{x}_{t,a_t}; \boldsymbol{\theta}_{t-1})^{\top}/m
12: Let \boldsymbol{\theta}_t = \operatorname{TrainNN}(\lambda, \eta, J, m, \{\mathbf{x}_{t,a_t}\}_{t=1}^k, \{r_{t,a_t}\}_{t=1}^k, \theta_0)
```


Regret upper bound complexity:

$$R_T \le \mathcal{O}(\sqrt{T\tilde{d}}\log T)$$

Theorem 4.5. Let \widetilde{d} be the effective dimension, and $\mathbf{h} = [h(\mathbf{x}^i)]_{i=1}^{TK} \in \mathbb{R}^{TK}$. There exist constant $C_1, C_2 > 0$, such that for any $\delta \in (0,1)$, if

$$\begin{split} &m \geq \mathrm{poly}(T,L,K,\lambda^{-1},\lambda_0^{-1},S^{-1},\log(1/\delta)), \\ &\eta = C_1(mTL+m\lambda)^{-1}, \end{split} \tag{4.2}$$

 $\lambda \ge \max\{1, S^{-2}\}$, and $S \ge \sqrt{2\mathbf{h}^{\top}\mathbf{H}^{-1}\mathbf{h}}$, then with probability at least $1 - \delta$, the regret of Algorithm 1 satisfies

$$R_T \le 3\sqrt{T}\sqrt{\tilde{d}\log(1 + TK/\lambda) + 2}$$

$$\cdot \left[\nu\sqrt{\tilde{d}\log(1 + TK/\lambda) + 2 - 2\log\delta} + (\lambda + C_2TL)(1 - \lambda/(TL))^{J/2}\sqrt{T/\lambda} + 2\sqrt{\lambda}S\right] + 1. \tag{4.3}$$

ullet $ilde{d}$ is defined as the effective dimension, which can be thought of as the eigenvalues of context NTK.

Definition 4.1 (Jacot et al. (2018); Cao & Gu (2019)). Let $\{\mathbf{x}^i\}_{i=1}^{TL}$ be a set of contexts. Define

$$\begin{split} \widetilde{\mathbf{H}}_{i,j}^{(1)} &= \mathbf{\Sigma}_{i,j}^{(1)} = \langle \mathbf{x}^i, \mathbf{x}^j \rangle, \qquad \mathbf{A}_{i,j}^{(l)} = \begin{pmatrix} \mathbf{\Sigma}_{i,i}^{(l)} & \mathbf{\Sigma}_{i,j}^{(l)} \\ \mathbf{\Sigma}_{i,j}^{(l)} & \mathbf{\Sigma}_{i,j}^{(l)} \end{pmatrix}, \\ \mathbf{\Sigma}_{i,j}^{(l+1)} &= 2\mathbb{E}_{(u,v) \sim N(\mathbf{0}, \mathbf{A}_{i,j}^{(l)})} [\sigma(u)\sigma(v)] \,, \\ \widetilde{\mathbf{H}}_{i,j}^{(l+1)} &= 2\widetilde{\mathbf{H}}_{i,j}^{(l)} \mathbb{E}_{(u,v) \sim N(\mathbf{0}, \mathbf{A}_{i,j}^{(l)})} [\sigma'(u)\sigma'(v)] + \mathbf{\Sigma}_{i,j}^{(l+1)}. \end{split}$$

Then, $\mathbf{H} = (\widetilde{\mathbf{H}}^{(L)} + \mathbf{\Sigma}^{(L)})/2$ is called the *neural tangent* kernel (NTK) matrix on the context set.

Lemma C.1 (Theorem 3.1, Arora et al. (2019)). Fix $\epsilon > 0$ and $\delta \in (0,1)$. Suppose that

$$m = \Omega\left(\frac{L^6 \log(L/\delta)}{\epsilon^4}\right),$$

then for any $i, j \in [TK]$, with probability at least $1 - \delta$ over random initialization of θ_0 , we have

$$|\langle \mathbf{g}(\mathbf{x}^i; \boldsymbol{\theta}_0), \mathbf{g}(\mathbf{x}^j; \boldsymbol{\theta}_0) \rangle / m - \mathbf{H}_{i,j}| \le \epsilon.$$

To derive an Upper Confidence Bound:

$$|f(\mathbf{x}_t; \boldsymbol{\theta}) - h(\mathbf{x}_t)| \leq \mathsf{UCB}$$

▶ $h(\mathbf{x}_t)$ is linear with respect to gradient.

Lemma 5.1. There exists a positive constant \bar{C} such that for any $\delta \in (0,1)$, if $m \geq \bar{C}T^4K^4L^6\log(T^2K^2L/\delta)/\lambda_0^4$, then with probability at least $1-\delta$, there exists a $\theta^* \in \mathbb{R}^p$ such that

$$h(\mathbf{x}^i) = \langle \mathbf{g}(\mathbf{x}^i; \boldsymbol{\theta}_0), \boldsymbol{\theta}^* - \boldsymbol{\theta}_0 \rangle,$$

▶ (1) Apply Ridge regression on $g(\mathbf{x}; \theta_0)$. Calculated the distance between $h(\mathbf{x}_t)$ and Ridge regression.

$$\|\sqrt{m}(\boldsymbol{\theta}^* - \boldsymbol{\theta}_0) - \bar{\mathbf{Z}}_t^{-1}\bar{\mathbf{b}}_t\|_{\bar{\mathbf{Z}}_t} \leq \bar{\gamma}_t.$$

▶ (2) Apply NTK objective $\langle g(\mathbf{x}; \theta_0), \boldsymbol{\theta}_t - \boldsymbol{\theta}_0 \rangle$. Calculated the distance between Ridge regression and NTK objective.

$$\|\boldsymbol{\theta}_t - \boldsymbol{\theta}_0 - \bar{\mathbf{Z}}_t^{-1} \bar{\mathbf{b}}_t / \sqrt{m}\|_2 \le (1 - \eta m \lambda)^{J/2} \sqrt{t/(m\lambda)} + \bar{C}_5 m^{-2/3} \sqrt{\log m} L^{7/2} t^{5/3} \lambda^{-5/3} (1 + \sqrt{t/\lambda}).$$

▶ (3) Calculated the distance between NTK objective and Network function.

Lemma B.4 (Lemma 4.1, Cao & Gu (2019)). There exist constants $\{\bar{C}_i\}_{i=1}^3 > 0$ such that for any $\delta > 0$, if τ satisfies that

$$\bar{C}_1 m^{-3/2} L^{-3/2} [\log(TKL^2/\delta)]^{3/2} \le \tau \le \bar{C}_2 L^{-6} [\log m]^{-3/2},$$

then with probability at least $1 - \delta$, for all $\widetilde{\theta}$, $\widehat{\theta}$ satisfying $\|\widetilde{\theta} - \theta_0\|_2 \le \tau$, $\|\widehat{\theta} - \theta_0\|_2 \le \tau$ and $j \in [TK]$ we have

$$\left| f(\mathbf{x}^j; \widetilde{\boldsymbol{\theta}}) - f(\mathbf{x}^j; \widehat{\boldsymbol{\theta}}) - \langle \mathbf{g}(\mathbf{x}^j; \widehat{\boldsymbol{\theta}}), \widetilde{\boldsymbol{\theta}} - \widehat{\boldsymbol{\theta}} \rangle \right| \leq \bar{C}_3 \tau^{4/3} L^3 \sqrt{m \log m}.$$

▶ Putting them together, we can calculate the upper bound for $|f(\mathbf{x}_t; \boldsymbol{\theta}) - h(\mathbf{x}_t)|!$.

Neural Thompson Sampling

lacktriangle Given an arm $\mathbf{x}_{t,i}$, to learn the expected reward $h(\mathbf{x}_{t,i})$, use the neural network

$$f(\mathbf{x}_{t,i}; \boldsymbol{\theta}) = \mathbf{W}_L \sigma(\mathbf{W}_{L-1} \sigma(\dots \sigma(\mathbf{W}_1 \mathbf{x}_{t,i}))).$$

▶ In round t, given n arms $\{\mathbf{x}_{t,1},\ldots,\mathbf{x}_{t,n}\}$, select an arm by

$$\forall i \in [n], \text{draw } \hat{r}_{t,i} \sim \mathcal{N}(\underbrace{f(\mathbf{x}_{t,i}; \boldsymbol{\theta})}_{\text{Mean: Exploitation}}, \underbrace{\sigma^2}_{\text{Variance: Exploration}})$$

$$\text{Select } \mathbf{x}_t = \arg_{i \in [n]} \max \hat{r}_{t,i}.$$
(9)

where
$$\sigma = \nu q(\mathbf{x}_{t:i}; \boldsymbol{\theta}_{t-1})^{\top} \mathbf{Z}_{t-1}^{-1} q(\mathbf{x}_{t:i}; \boldsymbol{\theta}_{t-1}).$$

Receive reward and update parameters.

Neural Thompson Sampling: Regret Upper Bound

► Regret bound complexity:

$$R_T \leq \mathcal{O}(\sqrt{T\tilde{d}}\log T).$$

Theorem 3.5. Under Assumption 3.4, set the parameters in Algorithm 1 as $\lambda = 1 + 1/T$, $\nu = B + R\sqrt{\tilde{d}\log(1 + TK/\lambda)} + 2 + 2\log(1/\delta)$ where $B = \max\left\{1/(22e\sqrt{\pi}), \sqrt{2\mathbf{h}^{\mathsf{T}}\mathbf{H}^{-1}\mathbf{h}}\right\}$ with $\mathbf{h} = (h(\mathbf{x}^1), \dots, h(\mathbf{x}^{TK}))^{\mathsf{T}}$, and R is the sub-Gaussian parameter. In line 9 of Algorithm 1, set $\eta = C_1(m\lambda + mLT)^{-1}$ and $J = (1 + LT/\lambda)(C_2 + \log(T^3L\lambda^{-1}\log(1/\delta)))/C_1$ for some positive constant C_1, C_2 . If the network width m satisfies:

$$m \ge \text{poly}(\lambda, T, K, L, \log(1/\delta), \lambda_0^{-1}),$$

then, with probability at least $1 - \delta$, the regret of Algorithm 1 is bounded as

$$R_T \le C_2(1+c_T)\nu\sqrt{2\lambda L(\widetilde{d}\log(1+TK)+1)T} + (4+C_3(1+c_T)\nu L)\sqrt{2\log(3/\delta)T} + 5,$$

where C_2, C_3 are absolute constants, and $c_T = \sqrt{4 \log T + 2 \log K}$.

Neural Thompson Sampling: Regret Upper Bound

- ▶ (1) Calculate variance σ^2 , which can be thought of as the UCB of $|f(\mathbf{x}_{t,i}; \boldsymbol{\theta}) h(\mathbf{x}_{t,i})|$.
 - 1. Calculate the distance between $h(\mathbf{x}_{t,i})$ and Ridge regression.
 - 2. Calculate the distance between Ridge regression and NTK.
 - 3. Calculate the distance between NTK and $f(\mathbf{x}_{t,i}; \boldsymbol{\theta})$.
- lacksquare (2) Use concentration inequalities to upper bound $|f(\mathbf{x}_{t,i}; m{ heta}) r_{t,i}|$.

EE-Net: Exploitation-Exploration Neural Networks

Same, given an arm $\mathbf{x}_{t,i}$, to learn the expected reward $h(\mathbf{x}_{t,i})$, use the neural network

$$f_1(\mathbf{x}_{t,i}; \boldsymbol{\theta}^1) = \mathbf{W}_L \sigma(\mathbf{W}_{L-1} \sigma(\dots \sigma(\mathbf{W}_1 \mathbf{x}_{t,i}))).$$

▶ Why explore? To fill the gap between expected reward and estimated reward.

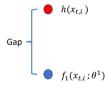


Figure 1: Case 1: When expected reward is larger than estiamted reward.

EE-Net: Exploitation-Exploration Neural Networks

Instead of calculating a statistic upper bound for $|h(\mathbf{x}_{t,i}) - f_1(\mathbf{x}_{t,i}; \boldsymbol{\theta}^2)|$, EE-Net uses a neural network f_2 to learn $h(\mathbf{x}_{t,i}) - f_1(\mathbf{x}_{t,i}; \boldsymbol{\theta}^2)$.

$$f_2(\mathbf{x}_{t,i}; \boldsymbol{\theta}^2) = \mathbf{W}_L \sigma(\mathbf{W}_{L-1} \sigma(\dots \sigma(\mathbf{W}_1 \mathbf{x}_{t,i}))).$$

- ► Ground truth: $h(\mathbf{x}_{t,i}) f_1(\mathbf{x}_{t,i}; \boldsymbol{\theta}^1)$, i.e., $r_{t,i} f_1(\mathbf{x}_{t,i}; \boldsymbol{\theta}^1)$.
- ▶ $h(\mathbf{x}_{t,i}) f_1(\mathbf{x}_{t,i}; \boldsymbol{\theta}^1)$ indicates exploration direction: "Upward" or "Downward" exploration.

EE-Net: Exploitation-Exploration Neural Networks

- ▶ Input: Gradient $\nabla_{\theta_1} f_1(\mathbf{x}_{t,i}; \theta^1)$. Why?
- $ightharpoonup
 abla_{\theta_1} f_1(\mathbf{x}_{t,i}; \boldsymbol{\theta}^1)$ contains two sides of information.
 - 1. Arm feature $\mathbf{x}_{t,i}$.
 - 2. Discriminative ability of f_1 (Exploration depending on the exploitation).
- ightharpoonup Build loss function \mathcal{L}_2

$$\mathcal{L}_2 = \frac{1}{2} \sum_{i=1}^t \left(f_2\left(\triangledown_{\boldsymbol{\theta}^1} f_1(\mathbf{x}_{t,i}; \boldsymbol{\theta}^1); \boldsymbol{\theta}^2 \right) - \underbrace{(r_i - f_1(\mathbf{x}_i; \boldsymbol{\theta}^1))}_{\mathsf{Ground truth}} \right)^2$$

After receiving r_t in round t, based on $\left\{ \nabla_{\boldsymbol{\theta}_1} f_1(\mathbf{x}_i; \boldsymbol{\theta}_i^1), r_i - f_1(\mathbf{x}_i; \boldsymbol{\theta}_i^1) \right\}_{i=1}^t$, use gradient descent to update $\boldsymbol{\theta}^2$.

EE-Net: Selection Criterion 1

▶ In round t, given n arms $\{\mathbf{x}_{t,1}, \dots, \mathbf{x}_{t,n}\}$, we select arm by

$$\mathbf{x}_{t} = \arg_{i \in [n]} \max \left(\underbrace{f_{1}(\mathbf{x}_{t,i}; \boldsymbol{\theta}_{t-1}^{1})}_{\text{Exploitation}} + \underbrace{f_{2}\left(\nabla_{\boldsymbol{\theta}_{t-1}^{1}} f_{1}(\mathbf{x}_{i}; \boldsymbol{\theta}_{t-1}^{1}); \boldsymbol{\theta}_{t-1}^{2}\right)}_{\text{Exploration}} \right)$$
(10)

ightharpoonup Receive reward r_t and update $oldsymbol{ heta}^1, oldsymbol{ heta}^2$.

EE-Net: Selection Criterion 2

Build Decision Maker $f_3(\cdot; \boldsymbol{\theta}^3)$.

- ▶ In roung t, given an arm $\mathbf{x}_{t,i}$, calculate its f_1, f_2 scores.
- ▶ Build a neural network $f_3(\cdot; \boldsymbol{\theta}^3)$.
- $\blacktriangleright \text{ Input: } f_1(\mathbf{x}_{t,i};\boldsymbol{\theta}^1_{t-1}), f_2(\triangledown_{\boldsymbol{\theta}^1_{t-1}f_1};\boldsymbol{\theta}^2_{t-1}).$
- ▶ Ground truth: $p_{t,i}$, i.e., the probability of $\mathbf{x}_{t,i}$ being the optimal arm in round t.
 - 1. Binary reward (0,1): $p_{t,i}=1.0$ if $r_{t,i}=1$; Otherwise, $p_{t,i}=0.0$ if $r_{t,i}=0$.
 - 2. Continuous reward [0,1]: (1) $p_{t,i}=\frac{r_{t,i}-0}{1-0}=r_{t,i}$; (2) Set a threshold $\gamma.$ $p_{t,i}=1.0$ if $r_{t,i}>\gamma$; Otherwise $p_{t,i}=0.0$.
- Build loss function:

$$\mathcal{L}_3 = -\frac{1}{t} \sum_{i=1}^{t} \left[p_t \log f_3((f_1, f_2); \boldsymbol{\theta}^3) + (1 - p_t) \log(1 - f_3((f_1, f_2); \boldsymbol{\theta}^3)) \right].$$
 (11)

▶ Update θ^3 in each round.

EE-Net: Selection Criterion 2

▶ In round t, given n arms $\{\mathbf{x}_{t,1},\ldots,\mathbf{x}_{t,n}\}$, we select arm by

1. Calculated
$$f_1(\mathbf{x}_{t,i}; \boldsymbol{\theta}_{t-1}^1), f_2(\nabla_{\boldsymbol{\theta}_{t-1}^1 f_1}; \boldsymbol{\theta}_{t-1}^2)$$
 (12)

2.
$$\mathbf{x}_t = \arg_{i \in [n]} \max f_3\left((f_1(\mathbf{x}_{t,i}; \boldsymbol{\theta}_{t-1}^1), f_2(\nabla_{\boldsymbol{\theta}_{t-1}^1 f_1}; \boldsymbol{\theta}_{t-1}^2)); \boldsymbol{\theta}_{t-1}^3 \right)$$
 (13)

• Receive reward r_t and update $\theta^1, \theta^2, \theta^3$.

EE-Net: Regret Upper Bound

Regret bound complexity:

$$R_T \leq \mathcal{O}(\sqrt{T\log T}).$$

Theorem 1. Let f_1 , f_2 follow the setting of f (Eq. $(5.\overline{I})$) with width m, m' respectively and same depth L. Let \mathcal{L}_1 , \mathcal{L}_2 be loss function defined in Algorithm \overline{I} . Set f_3 as $f_3 = f_1 + f_2$. Given two constants ϵ_1 , ϵ_2 , $0 < \epsilon_1$, $\epsilon_2 < 1$, assume

$$m \geq poly(T, n, L, \log(1/\delta) \cdot d \cdot e^{\sqrt{\log 1/\delta}}), \ m' \geq \Omega(m^{2}L)$$

$$\eta_{1} = \Theta\left(\frac{d\delta}{poly(T, n, L) \cdot m}\right), \ \eta_{2} = \Theta\left(\frac{\mathcal{O}(m^{2}L)\delta}{poly(T, n, L) \cdot m'}\right)$$

$$K_{1} = \Theta\left(\frac{poly(T, n, L)}{\delta^{2}} \cdot \log\left((\epsilon_{1}/2)^{-1}\right)\right), \ K_{2} = \Theta\left(\frac{poly(T, n, L)}{\delta^{2}} \cdot \log\left(\epsilon_{2}^{-1}\right)\right),$$

$$(5.3)$$

then with probability at least $1-\delta$, the expected cumulative regret of EE-Net in T rounds satisfies

$$\mathbf{R}_T \le \mathcal{O}\left((2\sqrt{T} - 1)\sqrt{2\epsilon_2}\right) + \mathcal{O}\left((\xi_2 + \epsilon_1)(2\sqrt{T} - 1)\sqrt{2\log(\mathcal{O}(Tn)/\delta)}\right). \tag{5.4}$$

EE-Net: Regret Upper Bound

Proof Workflow:

- lacklet $\forall t \in [T], i \in [n]$, assume $(\mathbf{x}_{t,i}, r_{t,i})$ are i.i.d random variables, generated from unknown \mathcal{D} and $f_3 = f_1 + f_2$.
- ▶ Given $\{\mathbf{x}_i, r_i\}_{i=1}^{t-1}$, calculate convergency error of f_3 .

Lemma B.3. Suppose $m \geq \max\left(poly(n,L,\delta^{-1}\cdot d),\Omega(e^{\sqrt{\log 1/\delta}})\right)$, the learning rate $\eta = \Omega(\frac{\delta d}{poly(T,n,L)m})$, the number of iterations K satisfies the conditions in Eq. $\overline{(C,I)}$, then with probability at least $1-\delta$, given a constant $0<\epsilon<1$, starting from random initialization,

- (1) (Theorem 1 in (Allen-Zhu et al., 2019)) The loss satisfies $\mathcal{L} \leq \epsilon$ (Eq. (5.2)) in $K = \Omega(\frac{poly(T,\eta,L)}{\delta^2} \cdot \log \epsilon^{-1})$ iterations,
- ► Calculate the generalization bound of f_3 with respect to h, such that we can upper bound $|f_3(\cdot; \boldsymbol{\theta}^3) h(\cdot)|$.

Lemma B.1. Given $0 < \epsilon_1, \epsilon_2 < 1$, suppose m, η, K_1, K_2 satisfy the conditions in Eq. (C.1). Then, with probability at least $1 - \delta$, for any $t \in [T]$, $i \in [n]$, it holds uniformly that

$$\mathbb{E}_{(\mathbf{x}_{t,i},r_{t,i}) \sim \mathcal{D}}[|f_2(\nabla_{\boldsymbol{\theta_1}} f_1/c_1 \sqrt{mL}; \boldsymbol{\theta}_t^2) - \left(r_{t,i} - f_1(\mathbf{x}_{t,i}; \boldsymbol{\theta}_t^1)\right)|] \leq \sqrt{\frac{2\epsilon_2}{t}} + (\xi_2 + \epsilon_1)\sqrt{\frac{2\log(\mathcal{O}(Tn)/\delta)}{t}}.$$

Comparison 1: Selection Criterion

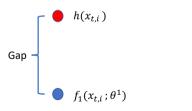
Table 1: Selection Criterion Comparison (\mathbf{x}_t : selected arm in round t).

Methods	Selection Criterion
Neural Epsilon-greedy	With probability $1-\delta$, $\mathbf{x}_t = \arg\max_{i \in [n]} f_1(\mathbf{x}_{t,i}; \boldsymbol{\theta}^1)$; Otherwise, select \mathbf{x}_t randomly.
NeuralTS (Zhang et al., 2020)	For $\mathbf{x}_{t,i}, \forall i \in [n]$, draw $\hat{r}_{t,i}$ from $\mathcal{N}(f_1(\mathbf{x}_{t,i}; \boldsymbol{\theta}^1), \sigma_{t,i}^2)$. Then, $\mathbf{x}_t = \arg\max_{i \in [n]} \hat{r}_{t,i}$.
NeuralUCB (Zhou et al., 2020)	$ig \mathbf{x}_t = rg \max_{i \in [n]} \left(f_1(\mathbf{x}_{t,i}; oldsymbol{ heta}^1) + \mathrm{UCB}_{t,i} ight).$
EE-Net (Our approach)	

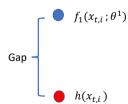
Comparison 2: Exploration Direction

Table 3: Exploration Direction Comparison.

Methods	"Upward" Exploration	"Downward" Exploration
NeuralUCB	\checkmark	×
NeuralTS	Randomly	Randomly
EE-Net	\checkmark	√



Case 1: Upward Exploration



Case 2: Downward Exploration

Comparison 3: Running Complexity

Table 5: Running Time/Space Complexity Comparison (p is number of parameters of f_1).

	e (# Neural Networks)
NeuralUCB $\mid \mathcal{O}(p^2) \mid \mathcal{O}(p^2) \mid$	1
NeuralTS $\mid \mathcal{O}(p^2) \mid \mathcal{O}(p^2) \mid$	1
EE-Net $\mid \mathcal{O}(p) \mid \mathcal{O}(p) \mid$	2-3

Comparison 4: Regret Bound

Table 4: Regret Bound Comparison.

Methods	Regret Upper Bound	Effective Dimension \tilde{d}
NeuralUCB	$\mathcal{O}(\sqrt{\tilde{d}T}\log T)$	Yes
NeuralTS	$O(\sqrt{\tilde{d}T}\log T)$	Yes
EE-Net	$O(\sqrt{T}\sqrt{\log T})$	No

Comparison 5: Empirical Performance

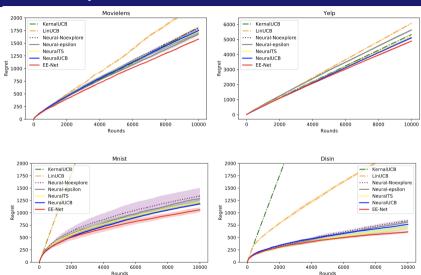


Figure 2: Regret comparison on Mnist and Disin (mean of 10 runs with standard deviation (shadow)). With the same exploitation network f_1 , EE-Net outperforms all baselines.

Summary

- Background
- ► Rule-based Exploration
 - 1. NeuralUCB
 - 2. NeuralTS
- ► Neural-based Exploration
 - 1. EE-Net

Thanks