X ILLINOIS @

EE-Net: Exploitation-Exploration Neural Networks in
Contextual Bandits

Yikun Ban, Yuchen Yan, Arindam Banerjee, Jingrui He
University of lllinois at Urbana-Champaign

April, 2022

1/27

Roadmap

1. Background
2. Problem Definition and Related Work

3. Proposed Algorithm: EE-Net

4. Comparison with Existing Work

2/27

Background

@ Sequential decision-making problem is everywhere

® Personalized recommendation.
® Online advertising
® (Clinical trials

® Exploitation-exploration dilemma exists in decision making

® Exploitation: Making greedy decisions by exploiting past knowledge
® Exploration: Taking risks to explore new information

©® Powerful tool: Contextual multi-armed bandits

® c-greedy
® Upper Confidence Bound (UCB)
® Thompson Sampling (TS)

3/27

Background: Contextual Bandit

n-arm contextual bandit problem:

® |Learner observes n d-dimensional contextual vectors (arms) in round ¢
X; = {xi; € RYi € [n]} (1)

® Learner selects an arm x; ;7 and receives a reward 7 ;. For brevity, denote by x;
the selected arm in round ¢ and by r; its reward.

® The goal is to minimize the following pseudo regret:

where 7} = max;cp, E[ry;] is the maximal expected reward.

4/27

Background: Linear Contextual Bandit

® Given an arm x;;,% € [n], its reward r;; is assumed to be a linear function:

Tei = OTXt,i + Meis Mei ~ v — sub-Gaussian (3)

where 0@ is unknown.

® To approximate 8, in round ¢, based on the past data {XT,’I“T}T 1, Ridge
regression is applied
t
at - Ait,tilbit,h it,t — I + Z XTXTy bit,t - Z XrTr, (4)

where I is a d x d identity matrix.

5/27

Roadmap

1. Background
2. Problem Definition and Related Work
3. Proposed Algorithm: EE-Net

4. Comparison with Existing Work

6/27

Problem Definition: Neural Contextual Bandit

® Given an arm xy;,% € [n], its reward r¢; is assumed to be a linear/non-linear
function:
ri = h(X¢i) + i, Elngi] = 0.0
where h is unknown and 0 <7 ; < 1.

® The goal is to minimize the following pesudo regret:

T
> (- Tt)]

t=1

Rr=E

where Elry; | x¢,] = h(x¢;), Vi € [n].

7/27

Reward Estimation

® To learn some universal reward function h, use the universal function
approximator, such as neural networks.

® Here, we use fully-connected neural network:

f(Xt,Z'; 9) = WLJ(WL_l(T(. .. U(Wlxm))).

output layer

input layer
hidden layer 1 hidden layer 2

where o is the ReLU activation function and 8 = (vec(WL)T, e
vec(W1)T)T € RP.

8/27

Related Work: NeuralUCB

NeuralUCB (Zhou et al., 2020):
® Let g(x;,;0) be the gradient Vg f(x;4;0).

® In round ¢, given n arms {x¢1,...,X;}, we select arm by
. . -1 .
Xt = argjcq, Max J(Xt,i560¢-1) +7-1 \/Q(Xt,z', 0:1)"Z, 1 g(xt;0¢-1)/m
—_—
Exploitation: Estimated reward Exploration: UCB

(5)
where y,_1 is a tuning parameter and Z; 1 =1+ !, g(xy;0)g(x;0) " is the
gradient outer product matrix.

e fis trained based on the historical data {x,,7;}._;.

9/27

Related Work: Neural Thompson Sampling (NeuralTS)

Neural TS (Zhang et al., 2021):

® Given an arm x;, to learn the expected reward h(x;;), use the neural network
f(x4,i;0) = Wro(Wr_i10(...0(Wixy;))).
® In round ¢, given n arms {X¢1,...,X¢n}, select an arm by

Vi € [n],draw 7y ~ N (1 f(xe4;0) KD)

Mean: Exploitation Variance: Exploration (6)

Select x; = arg;c(y) Max ;.

where 0 = vg(xy; 9t—1)TZ;_119(Xt,z'; 0;-1).

® Receive reward and update parameters.

10/27

Roadmap

1. Background
2. Problem Definition and Related Work
3. Proposed Algorithm: EE-Net

4. Comparison with Existing Work

11/27

EE-Net: Exploitation Neural Network

® To learn the expected reward function h(-), we use one neural network to learn it,
fi(x350") = Wro(Wr_10(...o(Wixes))),

where f) is trained based on historical data {x,,r,}._; (Exploitation Network).

® Why explore? To fill the gap between expected reward and estimated reward.

® h(x)
Gap (Potential Gain)

® fi(x;0Y

Case 1: When expected reward is larger than estimated reward.

12/27

EE-Net: Exploration Neural Network

® Instead of calculating a statistic upper bound for |h(x;) — f1 (xm-;92)|, EE-Net
uses another neural network f5 to learn h(xy;) — fl(xt,i;OQ).

fa(Xti 02) =Wro(Wr_10(...0(Wix¢;))).

® Ground truth: h(x;) — fl(xtyi;(?l), e, Ty — fl(xtyi;Hl).

® h(xy;) — fl(xtyi;el) indicates exploration direction: " Upward” or " Downward”

exploration.
® h(x) @ fi(x,;6"
Positive Potential gain ‘ Negative Potential gain
([] fi(xei;6) @ h(x:)
Case 1: Upward Exploration Case 2: Downward Exploration

13/27

EE-Net: Exploration Neural Network

Input: Gradient Vglfl(xt,i;Bl). Why?
Vo, f1(xt,i;0") contains two sides of information.

@ Arm feature x; ;.
@® Discriminative ability of f;(Exploration depending on the exploitation).

® Build loss function Lo
2
1
Ly = 2; fo (Vo fi(x4,:560");0%) — (ri — fi(x¢;6"))

Ground truth

t
T=1'

® After receiving r, in round ¢, based on { Ve, f1(x-;0;_1),7r — f1(x-;05_1)}
use gradient descent to update 6.

14/27

EE-Net: Selection Criterion 1

® In round ¢, given n arms {X¢1,..., X}, we select arm by
.pl gl \.p2
Xy = arg max fl(xt,i» 9t71) + f2 (V01 bil (Xt,i’ etfl)a 9%1) (7)
x¢t,i,0€MN] | N~ —_— t—1
Exploitation Exploration

e Receive reward 7 and update 6', 62

15/27

EE-Net: Decision Maker

Build Decision Maker f3(-;8%).
® In roung t, given an arm X, calculate its fi, fo scores.
® Build a neural network f3(-;6°).

Input: f1(x1,i;0_1), f2(Ver_ f1(x0); 07-1).

Ground truth: py;, i.e., the probability of x;; being the optimal arm in round t.
@ Binary reward (0,1): p;; = 1.0 if r, ;, = 1; Otherwise, p;; = 0.0 if r,; = 0.

@ Continuous reward [0, 1]: (1) p; = % =14 (2) Set a threshold ~. p,; = 1.0 if
¢ > 7v; Otherwise p; ; = 0.0.

Build loss function:

t

L3 = _% > [pelog f3((f1, £2);0%) + (1 — i) log(1 — f3((f1, £2);6%)] . (8)

=1

Update 6 in each round.

16/27

EE-Net: Selection Criterion 2

® In round ¢, given n arms {X;1,..., X}, we select arm by
1. Calculated fi(xi;0;_ 1), f2(Vgr f1(xe4);07_1) (9)
2. % =arg_max_fs ((fl(xt,zieg—l):f2(v9}71f15 9?_1));6’?_1) (10)
Xt,i,0EN

e Receive reward 7; and update 0!, 62,63

17/27

EE-Net: Regret Upper Bound

® Regret bound complexity:
RT < O(V TlOgT)7

tighter than existing works.

Theorem 1. Let f1, f> follow the setting of f (Eq. (5.1)) with the same width m and depth L. Let
L1, Lo be loss functions defined in Algorithm 1. Set f3 as f3 = f1 + fo. Given § € (0,1),¢ €
(0,0(7)]; p € (0,0(1)], suppose

m>Q (poly(T,n, L,p71) -log(1/6) - evlﬂg(Tn/J))) ,

-)
=79 =min | O ,0 ,
nem < <ﬁ52m> <poly(T, n,L)-m (52)
poly(T,n, L) -
Kl:K2:6<T'log(6 1))
Then, with probability at least 1 — 6, the expected cumulative regret of EE-Net in T rounds satisfies
O(Tn)

Ry < (2VT —1)(2V2¢ + 3v20(L)) + 2(1 + 26)(2VT — 1)4/21og — 63

18/27

EE-Net: Generalization Bound

® Generalization bound of neural networks in bandit framework: decrease with a

fixed @(%)—rate.

Lemma 5.1. Given ,¢ € (0,1),p € (0,0(1)), suppose m,n1,7m2, K1, Ko satisfy the conditions in
Eq. (5.2) and (x;;,7+;) ~ D,VT € [t],i € [n]. Let

Vo1 1fl(xt,i§0i—l) 9
X; = ar max t——;a 3 + X, i;el_ 7
¢ gxt,i,ie[n] [f2< cavmL t—1 f1(x¢4;0¢_1)

and T is the corresponding reward, given (X ;,7+,),% € [n]. Then, with probability at least (1 — §)
over the random of the initialization, it holds that

Vor_ fl(xt;gi—l)
e el Hf2 (1;93—1 — (re = F1(%;6;_1))

| {xr, Tr}tr_:ll:|

civmL 5.6)
2¢ 3L 21log(O(tn/9))
SH/ S 40 =) F (28—
<yFro(dz)+ar :
~1 ~2
where the expectation is also taken over (0}_,,02_,) that are uniformly drawn from (0,,6.),T €

[t — 1).

19/27

Roadmap

1. Background
2. Problem Definition and Related Work
3. Proposed Algorithm: EE-Net

4. Comparison with Existing Work

20/27

Comparison 1: Selection Criterion

Table 1: Selection Criterion Comparison (x;: selected arm in round ¢).

Methods

Selection Criterion

Neural Epsilon-greedy

With probability 1 — ¢, x; = argmaxy, , ic[n] fl(xm-;el);
Otherwise, select x; randomly.

NeuralTS (Zhang et al., 2021)

For X; 4, Vi € [n], draw 7 ; from N'(f1(x:,:;0"), 01,:2). Then,
select X, 3, 1 = arg maX;en] f',i-

NeuralUCB (Zhou et al., 2020) ‘

Xy = arg Maxy, ; icn] (fl(xt,i§ 6') + UCBm) .

EE-Net (Our approach)

Vi € [n], compute f1(xt4;0"), fo (VQlfl(Xt’i;el);oz) (Ex-
ploration Net). Then x; = arg maxy, ,ic[n] f3(f1, f2; 6.

21/27

Comparison 2: Exploration Direction

Table 3: Exploration Direction Comparison.

Methods | "Upward" Exploration | "Downward" Exploration
NeuralUCB | Vv | X
NeuralTS | Randomly | Randomly

EE-Net | v | N

® h(x) ©® fi(xi:oh
Positive Potential gain Negative Potential gain
® fi(xi0h ® ()
Case 1: Upward Exploration Case 2: Downward Exploration

22/27

Comparison 3: Complexity

Table 4: Regret Bound Comparison.

Methods | Regret Upper Bound ‘ Effective Dimension d

NeuralUCB ‘ O(VdTlogT) ‘ Yes
Neural TS ‘ O(VdTlogT) ‘ Yes
EE-Net | O(TlogT) ‘ No

Table 5: Running Time/Space Complexity Comparison (p is number of parameters of f;).

Methods | Time | Space | Training Time (# Neural Networks)
NeuralUCB | O(p?) | O(»?) | 1

NeuralTS | O(p?) | O(p?) | 1

EE-Net | O(p) | O(p) | 2-3

23/27

Comparison 4: Empirical Performance

® Public data sets: Mnist, Yelp, MovielLens, Disinformation
® Baselines:

@® LinUCB (Li et al., 2010)

@ KernelUCB (Valko et al., 2013)

© Neural-Epsilon

O NeuralUCB (Zhou et al., 2020)

@ NeuralTS (Zhang et al., 2021)

® Report: Average regret of 10 runs with standard deviation (shadow)

24/27

Comparison 4: Empirical Performance

e EE-Net outperforms all baselines cross all data sets.

Movielens

Yelp

- KernalucB

Linucs
Neural-epsilon
NeuralTS
NeuralUCB
EE-Net

6000

5000

4000

—- KernaluCB
LinUCB

—— Neural-epsilon
NeuralTs

— NeuralUCB

—— EE-Net

g g
& 1000 £ 3000
& &
7
=0 2000
500
1000
250
. 0
[2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Rounds Rounds
Mnist Disin
2000 2000 -
/ / —- KernalucB
1750 J 1750 / Linucs
; ! — Neural-epsilon
1500 1500 NeuralTs.
— NeuralUcB
1250 1250 — EENet
e g
1000 1000
< - Kernaluc <
750 erna 750
Linuce
500 — Neural-epsilon 500
NeuralTs,
250 — NeuralUCB 250
—— EE-Net
0 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Rounds Rounds

25/27

Summary

¢ Main contributions

@ We propose a novel neural exploration strategy, EE-Net, where another neural

network is assigned to learn the potential gain compared to the current reward
estimate.

@® Under standard assumptions of over-parameterized neural networks, we prove that

EE-Net can achieve the regret upper bound of O(y/T logT), which is tighter than

existing state-of-the-art contextual bandit algorithms and independent of the input
dimension.

© We conduct extensive experiments on four real-world data sets, showing that EE-Net
outperforms baselines including linear and neural versions of e-greedy, TS, and UCB.

26/27

X ILLINOIS @)

Thanks!

