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Background

1 Sequential decision-making problem is everywhere
• Personalized recommendation.
• Online advertising
• Clinical trials

2 Exploitation-exploration dilemma exists in decision making
• Exploitation: Making greedy decisions by exploiting past knowledge
• Exploration: Taking risks to explore new information

3 Powerful tool: Contextual multi-armed bandits
• ϵ-greedy
• Upper Confidence Bound (UCB)
• Thompson Sampling (TS)
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Background: Contextual Bandit

n-arm contextual bandit problem:

• Learner observes n d-dimensional contextual vectors (arms) in round t

Xt = {xt,i ∈ Rd|i ∈ [n]} (1)

• Learner selects an arm xt,i′ and receives a reward rt,i′ . For brevity, denote by xt

the selected arm in round t and by rt its reward.

• The goal is to minimize the following pseudo regret:

RT = E

[
T∑
t=1

(r∗t − rt)

]
(2)

where r∗t = maxi∈[n] E[rt,i] is the maximal expected reward.
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Background: Linear Contextual Bandit

• Given an arm xt,i, i ∈ [n], its reward rt,i is assumed to be a linear function:

rt,i = θ⊤xt,i + ηt,i, ηt,i ∼ ν − sub-Gaussian (3)

where θ is unknown.

• To approximate θ, in round t, based on the past data {xτ , rτ}t−1
τ=1, Ridge

regression is applied

θ̂t = Ait,t
−1bit,t, Ait,t = I+

t−1∑
τ=1

xτx
⊺
τ , bit,t =

t∑
τ=1

xτrτ , (4)

where I is a d× d identity matrix.
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Problem Definition: Neural Contextual Bandit

• Given an arm xt,i, i ∈ [n], its reward rt,i is assumed to be a linear/non-linear
function:

rt,i = h(xt,i) + ηt,i, E[ηt,i] = 0.0

where h is unknown and 0 ≤ rt,i ≤ 1.

• The goal is to minimize the following pesudo regret:

RT = E

[
T∑
t=1

(r∗t − rt)

]

where E[rt,i | xt,i] = h(xt,i),∀i ∈ [n].
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Reward Estimation

• To learn some universal reward function h, use the universal function
approximator, such as neural networks.

• Here, we use fully-connected neural network:

f(xt,i;θ) = WLσ(WL−1σ(. . . σ(W1xt,i))).

where σ is the ReLU activation function and θ =
(
vec(WL)

⊺, . . . ,
vec(W1)

⊺
)⊺ ∈ Rp.
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Related Work: NeuralUCB

NeuralUCB (Zhou et al., 2020):

• Let g(xt,i;θ) be the gradient ▽θf(xt,i;θ).

• In round t, given n arms {xt,1, . . . ,xt,n}, we select arm by

xt = argi∈[n]max

 f(xt,i;θt−1)︸ ︷︷ ︸
Exploitation: Estimated reward

+ γt−1

√
g(xt,i;θt−1)⊤Z

−1
t−1g(xt,i;θt−1)/m︸ ︷︷ ︸

Exploration: UCB


(5)

where γt−1 is a tuning parameter and Zt−1 = I+
∑t

t′=1 g(xt′ ;θ)g(xt′ ;θ)
⊤ is the

gradient outer product matrix.

• f is trained based on the historical data {xτ , rτ}tτ=1.
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Related Work: Neural Thompson Sampling (NeuralTS)

NeuralTS (Zhang et al., 2021):

• Given an arm xt,i, to learn the expected reward h(xt,i), use the neural network

f(xt,i;θ) = WLσ(WL−1σ(. . . σ(W1xt,i))).

• In round t, given n arms {xt,1, . . . ,xt,n}, select an arm by

∀i ∈ [n],draw r̂t,i ∼ N ( f(xt,i;θ)︸ ︷︷ ︸
Mean: Exploitation

, σ2︸︷︷︸
Variance: Exploration

)

Select xt = argi∈[n]max r̂t,i.

(6)

where σ = νg(xt,i;θt−1)
⊤Z−1

t−1g(xt,i;θt−1).

• Receive reward and update parameters.
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EE-Net: Exploitation Neural Network

• To learn the expected reward function h(·), we use one neural network to learn it,

f1(xt,i;θ
1) = WLσ(WL−1σ(. . . σ(W1xt,i))),

where f1 is trained based on historical data {xτ , rτ}tτ=1 (Exploitation Network).

• Why explore? To fill the gap between expected reward and estimated reward.

!!(#",$ ; %!)

ℎ(#",$ )

Gap (Potential Gain)

Case 1: When expected reward is larger than estimated reward.
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EE-Net: Exploration Neural Network

• Instead of calculating a statistic upper bound for |h(xt,i)− f1(xt,i;θ
2)|, EE-Net

uses another neural network f2 to learn h(xt,i)− f1(xt,i;θ
2).

f2(xt,i;θ
2) = WLσ(WL−1σ(. . . σ(W1xt,i))).

• Ground truth: h(xt,i)− f1(xt,i;θ
1), i.e., rt,i − f1(xt,i;θ

1).

• h(xt,i)− f1(xt,i;θ
1) indicates exploration direction: ”Upward” or ”Downward”

exploration.

!!(#",$ ; %!)

ℎ(#",$ )

Negative Potential gain

!!(#",$ ; %!)

ℎ(#",$ )

Case 1: Upward Exploration Case 2: Downward Exploration

Positive Potential gain
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EE-Net: Exploration Neural Network

• Input: Gradient ▽θ1f1(xt,i;θ
1). Why?

• ▽θ1f1(xt,i;θ
1) contains two sides of information.

1 Arm feature xt,i.
2 Discriminative ability of f1(Exploration depending on the exploitation).

• Build loss function L2

L2 =
1

2

t∑
i=1

f2
(
▽θ1f1(xt,i;θ

1);θ2
)
− (ri − f1(xt,i;θ

1))︸ ︷︷ ︸
Ground truth

2

• After receiving rt in round t, based on
{
▽θ1f1(xτ ;θ

1
τ−1), rτ − f1(xτ ;θ

1
τ−1)

}t

τ=1
,

use gradient descent to update θ2.
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EE-Net: Selection Criterion 1

• In round t, given n arms {xt,1, . . . ,xt,n}, we select arm by

xt = arg max
xt,i,i∈[n]

f1(xt,i;θ
1
t−1)︸ ︷︷ ︸

Exploitation

+ f2

(
▽θ1

t−1
f1(xt,i;θ

1
t−1);θ

2
t−1

)
︸ ︷︷ ︸

Exploration

 (7)

• Receive reward rt and update θ1,θ2.
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EE-Net: Decision Maker

Build Decision Maker f3(·;θ3).

• In roung t, given an arm xt,i, calculate its f1, f2 scores.

• Build a neural network f3(·;θ3).

• Input: f1(xt,i;θ
1
t−1), f2(▽θ1

t−1
f1(xt,i);θ

2
t−1).

• Ground truth: pt,i, i.e., the probability of xt,i being the optimal arm in round t.

1 Binary reward (0, 1): pt,i = 1.0 if rt,i = 1; Otherwise, pt,i = 0.0 if rt,i = 0.

2 Continuous reward [0, 1]: (1) pt,i =
rt,i−0
1−0 = rt,i; (2) Set a threshold γ. pt,i = 1.0 if

rt,i > γ; Otherwise pt,i = 0.0.

• Build loss function:

L3 = −1

t

t∑
i=1

[
pt log f3((f1, f2);θ

3) + (1− pt) log(1− f3((f1, f2);θ
3))

]
. (8)

• Update θ3 in each round.
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EE-Net: Selection Criterion 2

• In round t, given n arms {xt,1, . . . ,xt,n}, we select arm by

1. Calculated f1(xt,i;θ
1
t−1), f2(▽θ1

t−1
f1(xt,i);θ

2
t−1) (9)

2. xt = arg max
xt,i,i∈[n]

f3

(
(f1(xt,i;θ

1
t−1), f2(▽θ1

t−1
f1;θ

2
t−1));θ

3
t−1

)
(10)

• Receive reward rt and update θ1,θ2,θ3.
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EE-Net: Regret Upper Bound
• Regret bound complexity:

RT ≤ O(
√
T log T ),

tighter than existing works.
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EE-Net: Generalization Bound

• Generalization bound of neural networks in bandit framework: decrease with a
fixed Õ( 1√

t
)-rate.
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Comparison 1: Selection Criterion
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Comparison 2: Exploration Direction

!!(#",$ ; %!)

ℎ(#",$ )

Negative Potential gain
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Case 1: Upward Exploration Case 2: Downward Exploration

Positive Potential gain
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Comparison 3: Complexity
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Comparison 4: Empirical Performance

• Public data sets: Mnist, Yelp, MovieLens, Disinformation
• Baselines:

1 LinUCB (Li et al., 2010)
2 KernelUCB (Valko et al., 2013)
3 Neural-Epsilon
4 NeuralUCB (Zhou et al., 2020)
5 NeuralTS (Zhang et al., 2021)

• Report: Average regret of 10 runs with standard deviation (shadow)
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Comparison 4: Empirical Performance
• EE-Net outperforms all baselines cross all data sets.
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Summary

• Main contributions

1 We propose a novel neural exploration strategy, EE-Net, where another neural
network is assigned to learn the potential gain compared to the current reward
estimate.

2 Under standard assumptions of over-parameterized neural networks, we prove that
EE-Net can achieve the regret upper bound of O(

√
T log T ), which is tighter than

existing state-of-the-art contextual bandit algorithms and independent of the input
dimension.

3 We conduct extensive experiments on four real-world data sets, showing that EE-Net
outperforms baselines including linear and neural versions of ϵ-greedy, TS, and UCB.
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